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Abstract This is a detailed study on certain dynamics of Navier-Stokes and Euler equations
via a combination of analysis and numerics. We focus upon two main aspects: (a) zero
viscosity limit of the spectra of linear Navier-Stokes operator, (b) heteroclinics conjecture
for Euler equation, its numerical verification, Melnikov integral, and simulation and control
of chaos. Due to the difficulty of the problem for the full Navier-Stokes and Euler equations,
we also propose and study two simpler models of them.

Keywords Heteroclinic orbit · Chaos · Turbulence · Control · Melnikov integral · Zero
viscosity limit · Sine-Gordon equation · Navier-Stokes equations · Euler equations

1 Introduction

The dynamics of Navier-Stokes and Euler equations is a challenging problem. In particular,
such dynamics can be chaotic or turbulent. The main challenge comes from the large dimen-
sionality of the phase space where the Navier-Stokes and Euler equations pose extremely
intricate flows. Here the dynamics we refer to is the so-called Eulerian, in contrast to the
so-called Lagrangian, dynamics of fluids. The Eulerian dynamics is a dynamics in an infi-
nite dimensional phase space (e.g. a Banach space) posed by the Cauchy problem of either
the Navier-Stokes or the Euler equations as partial differential equations. The Lagrangian
dynamics of fluid particles is a dynamics of a system of two or three ordinary differential
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equations with vector fields given by fluid velocities. The Lagrangian dynamics of fluid par-
ticles in three dimensions can be chaotic even when the Eulerian dynamics is steady (e.g.
the ABC flow [3]). Nevertheless, the Lagrangian dynamics of 2D inviscid fluid particles is
always integrable. To our present knowledge, this fact was first observed in [2]. Interested
readers can find a proof in Appendix B. There have been a lot of works on Lagrangian chaos.
The Eulerian chaos (turbulence) that we are interested in here is irrelevant to the Lagrangian
chaos, and is the temporally chaotic evolution of the entire Eulerian velocity field under pe-
riodic boundary condition [18]. It is also irrelevant to the study on complex spatial patterns
of profiles packed inside the attractor of reaction-diffusion equations [35]. In finite dimen-
sions, heteroclinic cycles are often responsible for chaos. Here in a Banach space, we are
interested in searching for heteroclinic cycles of the Navier-Stokes flow and studying their
connections to chaos (turbulence) via Melnikov integrals. We consider this work as an ini-
tial study rather than a complete story along this direction. Rigorously proving the existence
of such heteroclinic cycles, and rigorously establishing the Melnikov integrals as leading
order distances between center-unstable and center-stable manifolds [18] are very difficult
open problems. In fact, existence of invariant manifolds for 2D Euler equation is a quite
well-known open problem. Such a existence result is a prerequisite for a rigorous Melnikov
integral theory.

Both the 2D Navier-Stokes and Euler equations are globally well-posed. Even though
the global well-posedness of 3D Navier-Stokes and Euler equations is a very difficult open
mathematical problem, 3D Navier-Stokes and Euler equations have local well-posedness
which is often enough for a dynamical system study in the phase space. To begin such a
dynamical system study, one needs to understand the spectra of the linear Navier-Stokes
and/or Euler operators [19]. The spectra of the linear Navier-Stokes operators consist of
eigenvalues, whereas the spectra of the linear Euler operators contain continuous spectra.
Existence of invariant manifolds can be proved for Navier-Stokes equations [19], but is still
open for Euler equations. The size of the invariant manifolds for Navier-Stokes equations
tends to zero in the zero viscosity limit [19]. Through analytical studies before and numerical
study in the current article, We find that the spectra of the linear Navier-Stokes and Euler
operators can be classified into four categories in the zero viscosity limit:

(1) Persistence: These are the eigenvalues that persist and approach to the eigenvalues of
the corresponding linear Euler operator when the viscosity approaches zero. (e.g. at 2D
and 3D shears, and cat’s eye.)

(2) Condensation: These are the eigenvalues that approach and form a continuous spectrum
for the corresponding linear Euler operator when the viscosity approaches zero. (e.g. at
2D and 3D shears, cat’s eye, and ABC flow.)

(3) Singularity: These are the eigenvalues that approach to a set that is not in the spectrum
of the corresponding linear Euler operator when the viscosity approaches zero. (e.g. at
2D and 3D shears.)

(4) Addition: This is a subset of the spectrum of the linear Euler operator, which has no
overlap with the zero viscosity limit set of the spectrum of the linear NS operator. (e.g.
cat’s eye.)

In the case of 2D shear, persistence have been rigorously proved [19]. All the rest of the
above classification was discovered by the current numerical study. We also find that as
the viscosity approaches zero, the spectrum of the linear Navier-Stokes operator undergoes
a fascinating deformation. Focusing upon the persistent unstable eigenvalue, we propose
a heteroclinics conjecture, i.e. there should be a heteroclinic orbit (in fact heteroclinic cy-
cles) associating to the instability for Euler equation. We will present both analytical and
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numerical study upon this heteroclinics conjecture. Then we conduct a Melnikov integral
calculation along the numerically obtained approximate heteroclinic orbit. We also com-
pare the Melnikov prediction with the numerical simulation and control of chaos for the
Navier-Stokes equations. Numerically we mainly use the Liapunov exponent as a measure
of chaos. In some case, we also plot the Poincaré return map. We realize that the size of
Galerkin truncations for the full Navier-Stokes equations is limited by the computer ability.
Thus we propose two simpler models of the Navier-Stokes equations. For the so-called line
model, we obtain numerically exact heteroclinic orbits for any size of Galerkin truncations.
We also realize that due to viscosity, the chaos in Galerkin truncations of Navier-Stokes
equations is often transient chaos, i.e. the chaos has a finite life time. Infinite life time chaos
can be observed in Galerkin truncations of Euler equations.

Chaos and turbulence have no good averages [23]. The matter is more fundamental than
just poor understanding of averages. The very mechanism of chaos leads to the impossibility
of a good average [18]. On the other hand, chaos and turbulence are ubiquitous. In high
dimensional systems, there exists tubular chaos [15–18] which further confirms that there is
no good average. The hope is that chaos and turbulence can be controlled. Two aspects of
control are practically important in applications: Taming and enhancing. When an airplane
meets turbulence, it will be nice, safer and economic if we can tame the turbulence into a
laminar flow or a less turbulent flow [1, 10, 28]. In a combustor, enhancing turbulence can
get the fuel and oxidant mixed and burned more efficiently [10, 28]. Theoretically, one can
also make use of the ergodicity of chaos to gear an orbit to a specific target [30]. Many other
possibilities of applications of control can be designed too. An advantage of the control is
that it can be done in a trial-correction manner without a detailed knowledge of turbulence.

Clearly, control of chaos and turbulence has great industrial value. From a mathemati-
cal point of view, the question is how much mathematics is in this control theory. So far,
the mathematical merit of the theory of control of chaos is not nearly as great as proving
the existence of chaos [18]. Obviously, a lot of good numerics is in this control theory. In
this article, we will address this control theory from a mathematical perspective, and try to
formulate some good mathematical problems. One can add a control to any equation. But
the only meaningful controls are the ones that are practical. Consider the 3D Navier-Stokes
equations for example

ui,t + ujui,j = −p,i + εui,jj + fi + Ci ,

defined on a spatial domain D with appropriate boundary conditions, where ε = 1/Re is
the inverse of the Reynolds number, and fi = fi(t, x) is the external force. Assume that
without the control Ci , the solutions are turbulent. The goal is to find a practical control to
either tame or enhance turbulence. For instance, a practical control Ci = Ci (t, x) should be
spatially localized (perhaps near the boundary).

Recently, there has been quite amount of works on numerical simulations of chaos in
Navier-Stokes equations [4, 5, 9, 29, 33, 34]. Here we try to combine numerics with analysis
in terms of Melnikov integrals. Unlike the sine-Gordon system studied in Appendix A, ana-
lytical calculation of the Melnikov integrals is not feasible at this moment for Navier-Stokes
equations. So we will resort to numerical calculations. It is an interesting open mathematical
problem that whether or not 2D Euler equation is integrable as a Hamiltonian system in the
Liouville sense. Since 2D Euler equation possesses infinitely many constants of motion, it is
tempting to conjecture that 2D Euler equation is integrable. Another support to such a con-
jecture is that both 2D and 3D Euler equations have Lax pairs [13, 22, 25]. In fact, it is even
rational to conjecture that 3D Euler equations are integrable. As mentioned above, we pro-
pose the so-called heteroclinics conjecture for Euler equations, i.e. there exist heteroclinic
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cycles for Euler equations. We numerically simulate the heteroclinic orbits and use the nu-
merical results to conduct numerical calculations on Melnikov integrals. In these numerical
simulations, it is crucial to make use of known results on the spectra of linear Navier-Stokes
and Euler operators [11, 12, 19]. We use the numerical Melnikov integral as a tool for both
predicting and controling chaos. As a measure of chaos, we calculate the Liapunov expo-
nents. We find that the calculated Liapunov exponents depend on the computational time
interval and the precision of the computation. This is not surprising since it is well known
that the dependence of the Liapunov exponents upon various parameters can be very rough.
Nevertheless, as a measure of chaos, Liapunov exponents prove to be very robust. Since the
chaos is often transient, we make comparison on the base of fixed time interval and fixed
precision of computation.

Our numerics resorts to Galerkin truncations. But Galerkin truncations are somewhat
singular perturbations of Euler equations. Higher single Fourier modes have more unstable
eigenvalues. Therefore, it is difficult to derive dynamical pictures for Euler equations from
their Galerkin truncations. On the other hand, higher single Fourier modes have more dissi-
pation under Navier-Stokes flows. So Galerkin truncations perform better for Navier-Stokes
equations than Euler equations. Today’s computer ability still limits the size of the Galerkin
truncations. With better future computer ability, Galerkin truncations will paint better and
better pictures of Navier-Stokes and Euler equations. It seems also important to design spe-
cial models that can picture special aspects of the dynamics of Navier-Stokes and Euler
equations.

2 Zero Viscosity Limit of the Spectrum of 2D Linear Navier-Stokes Operator

We will study the following form of 2D Navier-Stokes (NS) equation with a control,

∂t� + {�,�} = ε[�� + f (t, x) + bδ̃(x)], (2.1)

where � is the vorticity which is a real scalar-valued function of three variables t and x =
(x1, x2), the bracket {, } is defined as

{f,g} = (∂x1f )(∂x2g) − (∂x2f )(∂x1g),

where � is the stream function given by,

u1 = −∂x2�, u2 = ∂x1�,

the relation between vorticity � and stream function � is,

� = ∂x1u2 − ∂x2u1 = ��,

and ε = 1/Re is the inverse of the Reynolds number, � is the 2D Laplacian, f (t, x) is the
external force, bδ̃(x) is the spatially localized control, and b is the control parameter. We
pose the periodic boundary condition

�(t, x1 + 2π,x2) = �(t, x1, x2) = �(t, x1, x2 + 2π/α),

where α is a positive constant, i.e. the 2D NS is defined on the 2-torus T
2. We require that

� , f and δ̃ have mean zero
∫

T2
�dx =

∫
T2

f dx =
∫

T2
δ̃dx = 0.
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Of course � always has zero mean. In this case, � = �−1�.
In both 2D and 3D, the linear NS operator obtained by linearizing NS at a fixed point has

only point spectrum consisting of eigenvalues lying in a parabolic region [19]. On the other
hand, the corresponding linear Euler can have continuous spectrum besides point spectrum
[19]. In this section, we shall study the 2D linear NS operator for two fixed points: 2D shear
and cat’s eye. For the 2D shear, it has been proved [19] that the zero viscosity limit of the
unstable eigenvalue has the property of Persistence (cf. Introduction). For details, see The-
orem 2.1. Below we will find out through numerics that there is also a stable eigenvalue of
the 2D shear, that has the property of persistence. Also there are eigenvalues of cat’s eye
that have this property. We will also find out numerically that both 2D shear and cat’s eye
have the property of Condensation (cf. Introduction). But 2D shear has the unique property
of Singularity (cf. Introduction). And cat’s eye has the unique property of Addition (cf. In-
troduction).

2.1 A Shear Fixed Point

For the external force f = 
 cosx1 (b = 0), � = 
 cosx1 is a shear fixed point, where 
 is
an arbitrary real nonzero constant. Choose α ∈ (0.5,0.84). There is a ε∗ > 0 such that when
ε > ε∗, the fixed point has no eigenvalue with positive real part, and when ε ∈ [0, ε∗), the
fixed point has a unique positive eigenvalue [19]. Notice that this unique eigenvalue persists
even for linear Euler (ε = 0). In fact, for linear Euler (ε = 0), there is a pair of eigenvalues,
and the other one is the negative of the above eigenvalue. Precise statements on such results
are given in the theorem below. Later we will discover numerically that some of the rest
eigenvalues of the linear Navier-Stokes operator somehow form the continuous spectrum of
linear Euler (ε = 0) as ε → 0, while others do not converge to the spectrum of linear Euler
(ε = 0) at all [19, 20]. Using the Fourier series

� =
∑

k∈Z2\{0}
ωke

i(k1x1+αk2x2),

where ω−k = ωk (in fact, we always work in the subspace where all the ωk’s are real-valued),
one gets the spectral equation of the linearized 2D Navier-Stokes operator at the fixed point
� = 2 cosx1,

An−1ωn−1 − ε|k̂ + np|2ωn − An+1ωn+1 = λωn, (2.2)

where k̂ ∈ Z
2 \ {0}, p = (1,0), ωn = ωk̂+np , An = A(p, k̂ + np), and

A(q, r) = α

2

[
1

r2
1 + (αr2)2

− 1

q2
1 + (αq2)2

] ∣∣∣∣q1 r1

q2 r2

∣∣∣∣ .

(In fact, the An’s should be counted twice due to switching q and r , but the difference is only
a simple scaling of ε and λ.) Thus the 2D linear NS decouples according to lines labeled
by k̂. The following detailed theorem on the spectrum of the 2D linear NS at the fixed point
� = 2 cosx1 was proved in [19].

Theorem 2.1 (The Spectral Theorem [19]) The spectra of the 2D linear NS operator (2.2)
have the following properties.
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(1) (αk̂2)
2 + (k̂1 +n)2 > 1, ∀n ∈ Z\ {0}. When ε > 0, there is no eigenvalue of non-negative

real part. When ε = 0, the entire spectrum is the continuous spectrum

[−iα|k̂2|, iα|k̂2|].
(2) k̂2 = 0, k̂1 = 1. The spectrum consists of the eigenvalues

λ = −εn2, n ∈ Z \ {0}.
The eigenfunctions are the Fourier modes

ω̃npeinx1 + c.c., ∀ω̃np ∈ C, n ∈ Z \ {0}.
As ε → 0+, the eigenvalues are dense on the negative half of the real axis (−∞,0].
Setting ε = 0, the only eigenvalue is λ = 0 of infinite multiplicity with the same eigen-
functions as above.

(3) k̂2 = −1, k̂1 = 0.
(a) ε > 0. For any α ∈ (0.5,0.95), there is a unique ε∗(α),

√
32 − 3α6 − 17α4 − 16α2

2(α2 + 1)(α2 + 4)
< ε∗(α) <

1

(α2 + 1)

√
1 − α2

2
, (2.3)

where the term under the square root on the left is positive for α ∈ (0.5,0.95), and
the left term is always less than the right term. When ε > ε∗(α), there is no eigen-
value of non-negative real part. When ε = ε∗(α), λ = 0 is an eigenvalue, and all the
rest eigenvalues have negative real parts. When ε < ε∗(α), there is a unique positive
eigenvalue λ(ε) > 0, and all the rest eigenvalues have negative real parts. ε−1λ(ε) is
a strictly monotonically decreasing function of ε. When α ∈ (0.5,0.8469), we have
the estimate
√

α2(1 − α2)

2(α2 + 1)
− α4(α2 + 3)

4(α2 + 1)(α2 + 4)
− ε(α2 + 1) < λ(ε) <

√
α2(1 − α2)

2(α2 + 1)
− εα2,

where the term under the square root on the left is positive for α ∈ (0.5,0.8469).

√
α2(1 − α2)

2(α2 + 1)
− α4(α2 + 3)

4(α2 + 1)(α2 + 4)
≤ lim

ε→0+ λ(ε) ≤
√

α2(1 − α2)

2(α2 + 1)
.

In particular, as ε → 0+, λ(ε) = O(1).
(b) ε = 0. When α ∈ (0.5,0.8469), we have only two eigenvalues λ0 and −λ0, where λ0

is positive,

√
α2(1 − α2)

2(α2 + 1)
− α4(α2 + 3)

4(α2 + 1)(α2 + 4)
< λ0 <

√
α2(1 − α2)

2(α2 + 1)
.

The rest of the spectrum is a continuous spectrum [−iα, iα].
(c) For any fixed α ∈ (0.5,0.8469),

lim
ε→0+ λ(ε) = λ0. (2.4)
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(4) Finally, when ε = 0, the union of all the above pieces of continuous spectra is the imag-
inary axis iR.

Remark 2.2 In the current periodic boundary condition case, viscosity does not destabilize
the flow in contrast to the non-slip boundary condition case [26]. The Orr-Sommerfeld equa-
tion and Rayleigh equation have the same periodic boundary condition in the former case,
and different number of boundary conditions in the latter case.

Once the assumptions on the linear spectrum are set, a general invariant manifold theorem
for Navier-Stokes equations is easy to prove and has been known for a long time, see e.g.
[6]. On the other hand, verifying the assumptions for specific problems are impossible in
most cases. For the specific fixed point � = 2 cosx1, its spectrum is completely known
(Theorem 2.1), and we obtained the following specific invariant manifold theorem without
any assumption left.

Theorem 2.3 (Invariant Manifold Theorem [19]) For any α ∈ (0.5,0.95), and ε ∈ (0, ε∗(α))

where ε∗(α) > 0 satisfies (2.3), in a neighborhood of � = 2 cosx1 in the Sobolev space
H(T2) ( ≥ 3), there are an 1-dimensional C∞ unstable manifold and an 1-codimensional
C∞ stable manifold.

One of the goals of the work [19] is to study the zero viscosity limit of the invariant
manifolds of the 2D NS. For this study, it is crucial to understand the deformation of the
linear spectra as ε → 0+. Of course, studying this limit is of great interest in its own right. It
is an interesting but difficult analysis problem too. Below we will study this numerically. We
truncate (2.2) at different sizes and compute the eigenvalues of the resulting matrices. We
increase the truncation size until we see reliability of the result. We also tested the continued
fraction approach [12] for computing eigenvalues, the result is much worse. So we dropped
the continued fraction approach.

When k̂1 = 0 and k̂2 = 1, α = 0.7, the unique ε∗ in (2.3) belongs to the interval 0.332 <

ε∗ < 0.339, such that when ε < ε∗, a positive eigenvalue appears. We test this criterion
numerically and find that it is very sharp even when the truncation of the linear system (2.2)
is as low as |n| ≤ 100. As ε → 0+, we tested the truncation of the linear system (2.2) up to
|n| ≤ 1024 for α = 0.7, the patterns are all the same. Below we present the case |n| ≤ 200 for
which the pattern is more clear. Figure 1a shows the case ε = 0.14 where there is one positive
eigenvalue and all the rest eigenvalues are negative. Figure 1b shows the case ε = 0.13
where a pair of eigenvalues jumps off the real axis and becomes a complex conjugate pair.
Figure 1c shows the case ε = 0.07 where another pair of eigenvalues jumps off the real axis
and becomes a complex conjugate pair. Figure 1d shows the case ε = 0.03 where another
pair of eigenvalues jumps off the real axis and becomes a complex conjugate pair, while the
former two pairs getting closer to each other. Figure 2a shows the case ε = 0.0004 where
many pairs of eigenvalues have jumped off the real axis and a bubble is formed. Figure 2b
shows the case ε = 0.00013 where the bubble has expanded. Including many other case
testings, our conclusion is that: As ε → 0+, the limiting picture is shown in Fig. 2c. Setting
ε = 0, the spectrum of the line k̂1 = 0 and k̂2 = 1 of the linear Euler operator has been
established rigorously (Theorem 2.1) and is shown in Fig. 2d, where the segment on the
imaginary axis is the continuous spectrum. Comparing Figs. 2c and 2d, we see that the two
eigenvalues represent “persistence”, the vertical segment represents “condensation”, and
the two horizontal segments represent “singularity”. Next we study one more line: k̂1 = 0
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Fig. 1 The eigenvalues of the linear system (2.2) when k̂1 = 0 and k̂2 = 1, α = 0.7, and various ε

and k̂2 = 2 (α = 0.7). In this case, there is no unstable eigenvalue. Figure 3a shows the
case ε = 1.5 where all the eigenvalues are negative. As ε is decreased, the eigenvalues go
through the same process of jumping off the real axis and developing a bubble. Figure 3b
shows the case ε = 0.00025 where the bubble has expanded. As ε → 0+, the limiting picture
is similar to Fig. 2c except that there is no persistent eigenvalue. The cases k̂1 = 0 and k̂2 > 2
(α = 0.7) are all the same with the case k̂1 = 0 and k̂2 = 2 (α = 0.7). Figure 4a shows the
limiting picture of the entire spectrum of the linear NS operator as ε → 0+. Figure 4b shows
the entire spectrum of the linear Euler operator (ε = 0) given by Theorem 2.1.

The fascinating deformation of the spectra as ε → 0+ and the limiting spectral picture
clearly depict the nature of singular limit of the spectra as ε → 0+. In the “singularity” part
of the limit, there is a discrete set of values for the imaginary parts of the eigenvalues, which
represent decaying oscillations with a discrete set of frequencies. Overall, the “singularity”
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Fig. 2 The eigenvalues of the linear system (2.2) when k̂1 = 0 and k̂2 = 1, α = 0.7, and various ε (continued)

part represents the temporally irreversible nature of the ε → 0+ limit, in contrast to the
reversible nature of the linear Euler equation (ε = 0).

2.2 A Cat’s Eye Fixed Point

In this section, we will study another important fixed point – a cat’s eye fixed point. The
periodic domain now is the square, i.e. α = 1 (instead of 0.7). The cat’s eye fixed point in
physical variable is given by

� = 2 cosmx1 + 2γ cosmx2, (2.5)

where m is a positive integer, and γ ∈ (0,1]. In terms of Fourier modes: Let p = (m,0) and
q = (0,m), then the cat’s eye is given by

ω∗
p = 1, ω∗

−p = 1, ω∗
q = γ, ω∗

−q = γ,
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Fig. 3 The eigenvalues of the linear system (2.2) when k̂1 = 0 and k̂2 = 2, α = 0.7, and various ε

Fig. 4 The entire spectrum of the linear NS operator (2.2) when α = 0.7, ε → 0+ or ε = 0

and all other ω∗
k ’s are zero. The spectral equation for the linear 2D NS operator at the Cat’s

eye is then given by

λωk = A(p, k − p)ωk−p − A(p, k + p)ωk+p − ε|k|2ωk

+ γA(q, k − q)ωk−q − γA(q, k + q)ωk+q , (2.6)

where

A(k, r) =
[

1

r2
1 + r2

2

− 1

k2
1 + k2

2

] ∣∣∣∣k1 r1

k2 r2

∣∣∣∣ .
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Fig. 5 The spectrum of the linear NS operator (2.6) where m = 1, γ = 0.5, and various ε

First we study the case of m = 1 and γ = 0.5. Changing the value of γ does not affect
the deformation patterns of the eigenvalues of the linear NS (2.6) as ε → 0+. We truncate
the system (2.6) via the Galerkin truncation |k1| ≤ 32 and |k2| ≤ 32. This is the largest
Galerkin truncation that we are able to compute in a reasonable time. For smaller Galerkin
truncations, the deformation patterns of the eigenvalues are the same. When ε = 150, all the
eigenvalues of the linear NS (2.6) are negative as shown in Fig. 5a. When ε is decreased
to ε = 120, a pair of eigenvalues jumps off the real axis as shown in Fig. 5b. When ε is
decreased to ε = 80, three pairs of eigenvalues jump off the real axis as shown in Fig. 5c.
When ε is decreased to ε = 10, many pairs of eigenvalues have jumped off the real axis and
form several parabolas as shown in Fig. 5d. When ε is decreased to ε = 1, many parabolas
are formed as shown in Fig. 6a. After many case testings, our conclusion is that: The ε → 0+
limiting picture of the eigenvalues of the linear NS (2.6) is that the eigenvalues are dense on
the entire left half plane as shown in Fig. 6b. The continuous spectrum of the linear Euler,
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Fig. 6 The spectrum of the linear NS operator (2.6) where m = 1, γ = 0.5, and various ε (continued)

i.e. ε = 0 in (2.6), in any Sobolev space Hs(T2) where s is a non-negative integer, is a
vertical band of width 2sσ symmetric with respect to the imaginary axis {λ : |Re(λ)| ≤ sσ }
as shown in Fig. 6c, where σ > 0 is the largest Liapunov exponent of the vector field given
by the cat’s eye (2.5) [32]. Thus the width of the vertical band is proportional to the scale s

of the Sobolev space Hs(T2). The union of all such bands for all integers s ≥ 0 is the entire
complex plane. The eigenfunctions of the linear NS (2.6) when ε > 0 belong to Hs(T2) for
all integers s ≥ 0. All the eigenvalues of the linear NS (2.6) condense into the entire left half
plane—“condensation”. The right half plane (or right half of the vertical band corresponding
to Hs(T2)) represents “addition”. Thus the possible instability hinted by the right half band
of the continuous spectrum of linear Euler in Hs(T2) can not be realized by real viscous
fluids.

Next we study the case of m = 2 and γ = 0.5. Changing the value of γ does not affect the
deformation patterns of the eigenvalues of the linear NS (2.6) as ε → 0+. We truncate the
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Fig. 7 The spectrum of the linear NS operator (2.6) where m = 2, γ = 0.5, and various ε

system (2.6) via the Galerkin truncation |k1| ≤ 32 and |k2| ≤ 32. We increase the value of ε

up to 2 × 104, there are still eigenvalues with nonzero imaginary parts. These eigenvalues
seem always complex no matter how large is ε. The imaginary parts of these eigenvalues are
unchanged between ε = 2 × 104 and ε = 800 as can be seen from Figs. 7a, b. Decreasing
ε, the deformation patterns are similar to those of m = 1. When ε = 0.2, many eigenval-
ues have jumped off the real axis and form a dense parabolic region as shown in Fig. 7c.
Decreasing ε further, 6 eigenvalues with positive real parts appear, two of which are real,
and the rest four are complex. The limiting picture of the spectrum of the linear NS oper-
ator (2.6) as ε → 0 is the same with the m = 1 case as shown in Fig. 6b except the extra
six unstable eigenvalues. The continuous spectrum of the linear Euler operator (2.6) where
ε = 0 is the same with the m = 1 case as shown in Fig. 6c. There is no analytical result on
the eigenvalues of the linear Euler operator (2.6) where ε = 0. The numerics indicates that
the 6 eigenvalues in the right half plane and other 6 eigenvalues in the left half plane, of the
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linear NS operator (2.6) persist as ε → 0, and result in 6 eigenvalues in the right half plane
and their negatives for the linear Euler operator (2.6) where ε = 0.

3 The Heteroclinics Conjecture for 2D Euler Equation

Setting ε = 0 in the 2D Navier-Stokes equation (2.1), one gets the corresponding 2D Euler
equation for which one has the following constants of motion:

∫
T2

|u|2dx,

∫
T2

F(�)dx,

where F is an arbitrary function. Consider the simple fixed point � = 
 cosx1 (
 
= 0 real
constant). It has one unstable and one stable real eigenvalues which are negative of each
other. The rest of the spectrum is the entire imaginary axis which is a continuous spectrum
[12, 19]. We will use the constant of motion

G =
∫

T2
�2dx −

∫
T2

|u|2dx

to build a Melnikov integral for the corresponding 2D Navier-Stokes equation (2.1). We will
try to make use of the Melnikov integral as a measure of chaos and to conduct a control
of chaos, around the line of fixed points � = 
 cosx1 parametrized by 
. G is a linear
combination of the kinetic energy and the enstrophy. The gradient of G in � is given by

∇�G = 2(� + �−1�)

which is zero along the line of fixed points � = 
 cosx1. We define the Melnikov integral
for the 2D NS (2.1) as

M = α

8π2

∫ +∞

−∞

∫
T2

∇�G[�� + f (t, x) + bδ̃(x)]dxdt

= M0 + bMc, (3.1)

where

M0 = α

4π2

∫ +∞

−∞

∫
T2

(� + �−1�)[�� + f (t, x)]dxdt,

Mc = α

4π2

∫ +∞

−∞

∫
T2

(� + �−1�)δ̃(x)dxdt.

The question is: Where do we evaluate M? We propose the following conjecture.

• The Heteroclinics Conjecture: In the Sobolev space H(T2) ( ≥ 3), for any fixed point �

of the 2D Euler flow having an unstable eigenvalue, there is a pair of heteroclinic cycles
asymptotic to the two fixed points � and −�.

This conjecture is motivated by our previous studies on Galerkin truncations [14, 24]. As
discussed in the Introduction, this general heteroclinics conjecture is further supported by
the fact that 2D Euler equation has infinitely many invariants and a Lax pair structure [12,
13]. The nature of “a pair of heteroclinic cycles” is motivated from the symmetries to be
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discussed below. When the fixed points are shears, the heteroclinic cycles may be classical
solutions since the eigenfunction associated with an unstable eigenvalue for the linear Euler
operator is a classical solution [19], and that the claim is true for e.g. sine-Gordon and
nonlinear Schrödinger equations [18]. In the case that the Liapunov number of the 2D vector
field given by the fixed point is positive, then the continuous spectrum in H(T2) is a vertical
band expanding horizontally with  [32]. Thus when  is large enough, the possible unstable
eigenvalue will be immersed inside the continuous spectrum. In such cases, the unstable
eigenfunction has only lower regularity [27].

If this conjecture is true, we can evaluate M along the heteroclinic orbit. Also, under
the perturbation of the ε term, the heteroclinic orbits may break and re-connect somewhere,
thereby generating the heteroclinic chaos. As in finite dimensions, the Melnikov integral
depends on the initial time of the force f (t, x) besides other parameters. In Appendix A, we
show that one can use a Melnikov integral as a criterion to rigorously prove the existence
chaos, and to conduct control of chaos. For more details on Melnikov integrals in infinite
dimensions, see [18] where various systems have been surveyed. In the current case of 2D
NS, the rigorous mathematical problem is very difficult. First of all, the 2D Euler equation
has no invariant manifold result. In general, this is a problem of finding invariant manifolds
for hyperbolic quasilinear systems. On the other hand, our main interest is to use Melnikov
integrals as leading order terms of the distances between invariant manifolds. Therefore, a
rigorous Melnikov theory rests upon the existence result of invariant manifolds for 2D Euler
equation. The singular nature of the zero viscosity limit of the 2D Navier-Stokes equation
shall not pose any real difficulty. This type of problem has been resolved [18]. Thus the
Melnikov integral proposed above is of heuristic nature. We consider it as a first step toward
a more complete theory. The rationality of our heuristic Melnikov integral comes from the
fact that the fixed points � = 
 cosx1 are critical points of the invariant G, and at these
critical points, G is of saddle type [18]. Assuming that the invariant manifolds exist, then
the ∇G will be normal to the center-stable manifold of � = 
 cosx1 since there is only one
unstable mode. Second, the Melnikov integral measurement is only one of several ingredi-
ents toward proving the existence of chaos [18]. Other measurements are needed in order
to locate a heteroclinic cycle for 2D Navier-Stokes equation, thereby to prove the existence
of chaos [18]. There is no doubt that understanding all these delicate problems is crucial to
the study of turbulence in the neighborhood of the fixed points � = 
 cosx1, and the above
heuristic Melnikov integral is the crucial first step. At the current stage of the study, the read-
ers should view our Melnikov integral prediction and control of chaos from a physics theory
perspective rather than a rigorous mathematical one. Rigorous mathematical theory can only
be achieved for simpler systems [18]. Again Appendix A serves as a nice introduction for
readers interested in mathematical rigor.

The 2D Euler equation has several symmetries:

(1) �(t, x1, x2) −→ �(t,−x1,−x2),
(2) �(t, x1, x2) −→ −�(−t, x1, x2),
(3) �(t, x1, x2) −→ −�(t,−x1, x2), or �(t, x1, x2) −→ −�(t, x1,−x2),
(4) �(t, x1, x2) −→ �(t, x1 + θ1, x2 + θ2), ∀θ1, θ2.

The first symmetry allows us to work in an invariant subspace in which all the ωk’s are real-
valued. This corresponds to the cosine transform in (3.2). For 2D NS, we will always work
in the invariant subspace where all the ωk’s are real-valued. The second symmetry maps the
unstable manifold of the fixed point 
 cosx1 into the stable manifold of −
 cosx1. The third
symmetry maps the unstable manifold of 
 cosx1 into the unstable manifold of −
 cosx1.
By choosing θ1 = π , the fourth symmetry maps the unstable manifold of 
 cosx1 into the
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unstable manifold of −
 cosx1. To maintain the cosine transform, the θ1 and θ2 in the fourth
symmetry can only be π and π/α.

If there is a heteroclinic orbit asymptotic to 
 cosx1 and −
 cosx1 as t → −∞ and +∞,
then there may be two corresponding to the unstable eigenvector and its negative. In fact,
both may lie on certain sphere in the phase space due to the constraint by the invariants. Then
the third symmetry generates another pair of heteroclinic orbit asymptotic to −
 cosx1 and

 cosx1 as t → −∞ and +∞. Together they form a pair of heteroclinic cycles.

Using the Fourier series

� =
∑

k∈Z2\{0}
ωke

i(k1x1+αk2x2), (3.2)

where ω−k = ωk and F−k = Fk , one gets the kinetic form of the 2D Euler equation

ω̇k =
∑

k=m+n

A(m,n) ωmωn,

where

A(m,n) = α

2

[
1

n2
1 + (αn2)2

− 1

m2
1 + (αm2)2

] ∣∣∣∣m1 n1

m2 n2

∣∣∣∣ .
Denote by � the hyperplane

� = {ω |ωk = 0, ∀ even k2}.
Notice that the existence of invariant manifolds around the fixed point � = 
 cosx1 is an
open problem. We have the following theorem.

Theorem 3.1 Assume that the fixed point � = 
 cosx1 has a 1-dimensional local unstable
manifold Wu, and Wu ∩ � 
= ∅; then the heteroclinics conjecture is true, i.e. there is a
heteroclinic orbit to the 2D Euler equation that connects � = 
 cosx1 and −�.

Proof Let �(t, x1, x2) be an orbit in Wu parametrized such that

�(0, x1, x2) ∈ �.

Then by the definition of �,

�(0, x1, x2) = −�(0, x1, x2 + π/α). (3.3)

By the second and fourth symmetries,

−�(−t, x1, x2 + π/α)

is in the stable manifold of −�. Thus

�(t, x1, x2) and − �(−t, x1, x2 + π/α)

are connected at t = 0, and together they form a heteroclinic orbit that connects � = 
 cosx1

and −�. �
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4 Numerical Verification of the Heteroclinics Conjecture for 2D Euler Equation

Besides the symmetries mentioned in last section, we will also make use of the con-
served quantities: kinetic energy E = ∑ |k|−2ω2

k (where |k|2 = k2
1 + α2k2

2 ) and enstrophy
S = ∑

ω2
k , which will survive as conserved quantities for any symmetric Galerkin trunca-

tion, to help us to track the heteroclinic orbit. We will only consider the case that all the ωk’s
are real-valued (i.e. cos-transform).

We make a Galerkin truncation by keeping modes: {|k1| ≤ 2, |k2| ≤ 2}, which results
in a 12 dimensional system. We choose α = 0.7. After careful consideration of the above
mentioned symmetries and conserved quantities (E = S = 1), we discover the following
initial condition that best tracks the heteroclinic orbit:

ω(j,0) = ω(j,2) = 0, ∀j,

ω(0,1) = 0.603624, ω(1,1) = −ω(−1,1) = 0.357832, (4.1)

ω(2,1) = ω(−2,1) = 0.435632.

We used fourth-order Runge-Kutta scheme. We also tested even higher-order Runge-Kutta
schemes which do not improve the accuracy too much. Starting from this initial condi-
tion, we calculate the solution in both forward and backward time for the same duration
of T = 11.8, and we discover the approximate heteroclinic orbit asymptotic to 2 cosx1 and
−2 cosx1 as t → −∞ and +∞, as shown in Fig. 8. Then the third symmetry generates an-
other heteroclinic orbit asymptotic to −2 cosx1 and 2 cosx1 as t → −∞ and +∞. Together
they form a heteroclinic cycle. Finally the second symmetry generates another heteroclinic
cycle. That is, we have a pair of heteroclinic cycles. Notice also that the approximate het-
eroclinic orbit in Fig. 8 has an extra loop before landing near −2 cosx1. This is due to the
k2 = 2 modes in the Galerkin truncation. For smaller Galerkin truncations, the heteroclinic
orbits can be calculated exactly by hand and have no such extra loop [14, 24], and existence
of chaos generated by the heteroclinic orbit can be rigorously proved in some case [24].

Remark 4.1 We have also conducted numerical experiments on Galerkin truncations by
keeping more modes: {|k1| ≤ 4, |k2| ≤ 4} and {|k1| ≤ 8, |k2| ≤ 8}. We found orbits that have

Fig. 8 The approximate
heteroclinic orbit projected onto
the (ω(1,0),ω(1,1))-plane in the
case of the {|k1| ≤ 2, |k2| ≤ 2}
Galerkin truncation of the 2D
Euler equation
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similar behavior as the approximate heteroclinic orbit in Fig. 8, but their approximations to
heteroclinics are not as good as the one in Fig. 8.

5 Melnikov Integral and Numerical Simulation of Chaos in 2D Navier-Stokes
Equation

Without the control (b = 0), using Fourier series for the 2D NS equation (2.1),

� =
∑

k∈Z2\{0}
ωke

i(k1x1+αk2x2), f =
∑

k∈Z2\{0}
Fke

i(k1x1+αk2x2),

where ω−k = ωk and F−k = Fk (in fact, we always work in the subspace where all the ωk’s
and Fk’s are real-valued), one gets the kinetic form of 2D NS

ω̇k =
∑

k=m+n

A(m,n) ωmωn + ε
(−[

k2
1 + (αk2)

2
]
ωk + Fk

)
,

where

A(m,n) = α

2

[
1

n2
1 + (αn2)2

− 1

m2
1 + (αm2)2

] ∣∣∣∣m1 n1

m2 n2

∣∣∣∣ .
For the numerical simulation of chaos, we continue the study on the Galerkin truncation:

{|k1| ≤ 2, |k2| ≤ 2}. We will use the Melnikov integral (3.1) to test the existence of chaos.
We always start from the initial condition (4.1). We choose the external force

f = a sin t cos(x1 + αx2). (5.1)

Then the Melnikov integral (3.1) has the expression

M0 = M1 + a

√
M2

2 + M2
3 sin(t0 + θ), (5.2)

where

sin θ = M3√
M2

2 + M2
3

, cos θ = M2√
M2

2 + M2
3

,

M1 = α

4π2

∫ +∞

−∞

∫ 2π/α

0

∫ 2π

0
(� + �−1�)�� dx1dx2dt,

M2 = α

4π2

∫ +∞

−∞

∫ 2π/α

0

∫ 2π

0
(� + �−1�) cos t cos(x1 + αx2) dx1dx2dt,

M3 = α

4π2

∫ +∞

−∞

∫ 2π/α

0

∫ 2π

0
(� + �−1�) sin t cos(x1 + αx2) dx1dx2dt,

where �(t) is the approximate heteroclinic orbit in Fig. 8 with �(0) given by (4.1). The
time integral is in fact over the interval [−11.8,11.8] rather than (−∞,∞), which already
gives satisfactory accuracy. This is because that ∇G decays very fast along the approximate
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heteroclinic orbit in both forward and backward time. Direct numerical computation gives
that

M1 = −29.0977, M2 = −0.06754695, M3 = 0.

Setting M0 = 0 in (5.2), we obtain that

sin(t0 + π) = 430.77741

a
.

Thus, when

|a| > 430.77741, (5.3)

there are solutions to M0 = 0. Next we will test the Melnikov criterion (5.3) and see if it is
related to chaos. We define an average Liapunov exponent σ in the following manner: For a
large time interval t ∈ [0, T ], let t0 = T and

tn = T + n2π, where 0 ≤ n ≤ N, and N = 103 or 2 × 103.

We define

σn = 1

2π
ln

‖�ω(tn + 2π)‖
‖�ω(tn)‖ .

Then the average Liapunov exponent σ is given by

σ = 1

N

N−1∑
n=0

σn.

We introduce the Poincaré return map on the section given by ω(1,0) = 0 and we only
record one direction intersection (from ω(1,0) positive to negative). For a large time inter-
val t ∈ [0, T ], we only record the last 1000 intersections and we use • to denote the inter-
sections with the two heteroclinic cycles. All the numerical simulations start from the initial
condition (4.1). The average Liapunov exponent computed here depends on the time inter-
val, the ensemble of average, and computer accuracy. This is due to the well-known fact that
the dependence of the Liapunov exponent upon various parameters is very rough. In such
cases, it only makes sense that the Liapunov exponents are compared in the same setting.
When ε = 0, there is no dissipation and no forcing. For a large time interval t ∈ [0, T ], the
average Liapunov exponent σ is as follows:

T = 4 × 104π T = 8 × 104π T = 12 × 104π T = 80 × 104π

σ = 0.042 σ = 0.0344 σ = 0.044 σ = 0.0848.

Figures 9a, b are the corresponding Poincaré return map plots. The dynamics is chaotic. It
seems that the life time of the chaos is infinite (i.e. non-transient chaos).

When ε > 0, we find that in all the cases that we tested, the chaotic dynamics is always
a transient chaos. It is well-known that the Melnikov criterion is only some sort of nec-
essary condition for the existence of heteroclinic chaos [18]. When the Melnikov integral
is zero, it gives an indication of a re-intersection of the broken heteroclinic orbit with cer-
tain large dimensional center-stable manifold [18]. We believe that such a re-intersection
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Fig. 9 The Poincaré return map plot projected onto the plane (ω(0,1),ω(1,1))-plane, in the case of the

{|k1| ≤ 2, |k2| ≤ 2} Galerkin truncation of the 2D Euler equation (i.e. ε = 0), where t ∈ [0, T ], T = 4 × 104π

or T = 80 × 104π , only the last 1000 intersections are recorded

will be reflected by the Liapunov exponent as inducing transient chaos. When ε = 10−5,
a ∈ [0,1208], and T = 4 × 104π , we find that

σ ∼ 10−4.

For instances,

a = 400 a = 430 a = 440

σ = 4.9 × 10−4 σ = 2.6 × 10−4 σ = 5.3 × 10−4

a = 650 a = 850

σ = 5.9 × 10−4 σ = 1.0 × 10−4.

(5.4)

It seems that there is a mild increase of σ around a = 440. Our Melnikov integral calculation
(5.3) predicts that when |a| > 430.77741, the broken heteroclinic orbit re-intersects with
certain center-stable manifold, possibly inducing weak transient chaos. But we discover a
sharp jump of σ near a = 1208 as shown below:

T = 2 × 104π T = 4 × 104π T = 8 × 104π T = 8 × 105π

a = 1208 σ = 3.6 × 10−4 σ = 3.9 × 10−4 σ = 4.1 × 10−4 σ = 0

a = 1208.2 σ = 6.1 × 10−2 σ = 6.1 × 10−2 σ = 2.5 × 10−2 σ = 0.

(5.5)
When a > 1208.2, σ can still be ∼ 10−4 (in fact, the dependence of σ on a is very rough).
But we did not observe any sharp jump of σ .

To double check on the change of dynamics associated with the sharp jump of σ near
a = 1208, we also plot the Poincaré return maps. For T = 4 × 104π , the corresponding
Poincaré return map plots are shown in Fig. 10. When T = 80 × 104π , the chaos for the
a = 1208.2 case also disappears. We believe that the sharp jump of σ near a = 1208 is due
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Fig. 10 The Poincaré return map plot projected onto the plane (ω(0,1),ω(1,1))-plane, in the case of the

{|k1| ≤ 2, |k2| ≤ 2} Galerkin truncation of the 2D NS equation, where ε = 10−5, t ∈ [0, T ], T = 2 × 104π ,
a = 1208 or a = 1208.2, only the last 1000 intersections are recorded

to the generation of a new stronger transient heteroclinic chaos. Perhaps near a = 1208,
a new heteroclinic cycle is generated and leads to transient heteroclinic chaos. Since our
analysis cannot access such information in the phase space, our comments here are purely
speculations.

Remark 5.1 We have also conducted numerical experiments on Galerkin truncations by
keeping more modes: {|k1| ≤ 4, |k2| ≤ 4} and {|k1| ≤ 8, |k2| ≤ 8}. We found that when ε = 0,
the strength of chaos increases as the modes are increased: For T = 8 × 103π ,

|k1|, |k2| ≤ 2 |k1|, |k2| ≤ 4 |k1|, |k2| ≤ 8

σ = 4.7 × 10−2 σ = 1.3 × 10−1 σ = 1.7 × 10−1.

Nevertheless, this does not hint that the dynamics of 2D Euler equation is chaotic since
all Galerkin truncations are perturbations of the 2D Euler equation. In fact, higher single
Fourier modes (as fixed points) have more eigenvalues with positive real parts. Also the
dependence of σ upon the size of the Galerkin truncation can be rough too.

When ε > 0, the strength of chaos decreases as the modes are increased. Higher modes
have more dissipations. Also all the chaos are transient. After enough time (∼ 2 × 104π ),
the ε = 0 chaos is almost smeared away by dissipation, we believe that at this stage the
re-intersected heteroclinic orbits play a role and can enhance the transient chaos. It is this
stage where the Melnikov calculation may be effective.

6 Melnikov Integral and Control of Chaos in 2D Navier-Stokes Equation

Now we turn on the control (b 
= 0). we continue the study on the Galerkin truncation:
{|k1| ≤ 2, |k2| ≤ 2}. We choose δ̃(x) as follows

δ̃(x) =
∑

k

ei(k1x1+αk2x2). (6.1)
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Then the Melnikov integral M in (3.1) is given by

M = M0 + bMc, (6.2)

where M0 is given by (5.2) and

Mc = α

4π2

∫ +∞

−∞

∫ 2π/α

0

∫ 2π

0
(� + �−1�)δ̃(x) dx1dx2dt,

evaluated along the approximate heteroclinic orbit in Fig. 8. We find that

Mc = −18.6884.

Thus

M = −29.0977 − 18.6884b + 0.06754695a sin(t0 + π).

When

b = −1.557,

the Melnikov integral M has roots for any a 
= 0.
All the numerical simulations start from the initial condition (4.1). When ε = 10−5, b =

−1.557, and T = 104π , we find that:

a = 1 a = 10 a = 200

σ = 7.1 × 10−4 σ = 8.8 × 10−4 σ = 9.3 × 10−4

a = 400 a = 800

σ = 9.0 × 10−4 σ = 6.6 × 10−4.

a = 1000 a = 1208 a = 1208.2

σ = 8.6 × 10−4 σ = 8.1 × 10−4 σ = 8.4 × 10−4

a = 1500 a = 3000

σ = 8.6 × 10−4 σ = 7.7 × 10−4.

In comparison with (5.4), the values of the Liapunov exponents under the control are dou-
bled. Thus the control seems enhancing chaos but not dramatically. We did not observe the
sharp jump of the values of σ around a = 1208 as in the b = 0 case (5.5). It is possible that
the control term breaks the possible new heteroclinic cycle of the b = 0 case.

In general, even though the above control theory is not as rigorous and effective as that
of sine-Gordon system in Appendix A, but we believe that the Melnikov integral can play a
significant role in the control of chaos in NS equation. After all, the chaos in NS is gener-
ated by instabilities characterized by unstable eigenvalues. And these unstable eigenvalues
persist for Euler equation as shown in a previous section. For Euler equation, these unstable
eigenvalues characterize hyperbolic structures which are very likely of heteroclinics type
due to infinitely many constants of motion. Thus Melnikov integrals supported upon these
hyperbolic structures should play an important role in predicting and controling chaos.
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7 Zero Viscosity Limit of the Spectrum of 3D Linear Navier-Stokes Operator

We will study the following form of 3D Navier-Stokes equation with a control,

∂t� + (u · ∇)� − (� · ∇)u = ε[�� + f (t, x) + bδ̃(x)], (7.1)

where u = (u1, u2, u3) is the velocity, � = (�1,�2,�3) is the vorticity, ∇ = (∂x1 , ∂x2 , ∂x3),
� = ∇ × u, ∇ · u = 0, ε = 1/Re is the inverse of the Reynolds number, � is the 3D Lapla-
cian, and f (t, x) = (f1(t, x), f2(t, x), f3(t, x)) is the external force, bδ̃(x) is the spatially
localized control, and b is the control parameter. We also pose periodic boundary condition
of period (2π/α,2π/β,2π ), i.e. the 3D NS is defined on the 3-torus T

3. We require that
u, �, f and δ̃ all have mean zero. In this case, u can be uniquely determined from � by
Fourier transform:

U1(k) = i|k|−2[k2ω3(k) − k3ω2(k)],
U2(k) = i|k|−2[k3ω1(k) − k1ω3(k)],
U3(k) = i|k|−2[k1ω2(k) − k2ω1(k)],

which can be rewritten in the compact form

U(k) = i|k|−2εmnkmωn(k),

where εmn is the permutation symbol (,m,n = 1,2,3),

k = (k1, k2, k3) = (ακ1, βκ2, κ3), κ = (κ1, κ2, κ3),

u(x) =
∑

κ∈Z3\{0}
U(k)eik·x, �(x) =

∑
κ∈Z3\{0}

ω(k)eik·x .

Using these Fourier transforms together with

f(x) =
∑

κ∈Z3\{0}
F(k)eik·x, δ̃(x) =

∑
κ∈Z3\{0}

�(k)eik·x,

we can rewrite the 3D NS (7.1) into the kinetic form

∂tω(k) + ks

∑
k=k̃+k̂

|k̃|−2k̃mωn(k̃)[εmnωs(k̂) − εsmnω(k̂)]

= ε[−|k|2ω(k) + F(k) + b�(k)]. (7.2)

A popular example of fixed points of the 3D NS (7.1) is the so-called ABC flow [3]

u1 = A sinx3 +C cosx2, u2 = B sinx1 +A cosx3, u3 = C sinx2 +B cosx1, (7.3)

where α = β = 1 and � = u = f and b = 0. The popularity comes from the fact that the
Lagrangian fluid particle flow generated by the vector field (7.3) can still be chaotic [3]. On
the other hand, in Appendix B, we prove that the Lagrangian flow generated by any solution
to the 2D Euler equation is always integrable.

In this section, we shall study the 3D linear NS operator for two fixed points: 3D shear
and ABC flow. We will find out numerically that 3D shear has exactly the same prop-
erties as 2D shear: persistence—these are the eigenvalues that persist and approach to
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the eigenvalues of the corresponding linear Euler operator when the viscosity approaches
zero, condensation—these are the eigenvalues that approach and form a continuous spec-
trum for the corresponding linear Euler operator when the viscosity approaches zero, and
singularity—these are the eigenvalues that approach to a set that is not in the spectrum of
the corresponding linear Euler operator when the viscosity approaches zero. But the ABC
flow only has the property of condensation.

7.1 A 3D Shear Fixed Point

Below we will study the simplest fixed point—the 3D shear flow (which is also a special
case of the ABC flow (7.3) where A = 2 and B = C = 0):

�1 = 2 sinx3, �2 = 2 cosx3, �3 = 0. (7.4)

Let p = (0,0,1), the Fourier transform ω∗ of the fixed point is given by:

ω∗
1(p) = −i, ω∗

2(p) = 1, ω∗
1(−p) = i, ω∗

2(−p) = 1,

ω∗
3(p) = ω∗

3(−p) = 0,

and ω∗
 (k) = 0, ∀k 
= p or − p. We choose α = 0.7 and β = 1.3 hoping that the fixed point

ω∗ has only one unstable eigenvalue. The spectral equations of the 3D linear NS operator at
the fixed point ω∗ are given by

[(k1 + ik2) − ik2|k − p|−2]ω1(k − p)

+ [i|k − p|−2k1 + i|k − p|−2(k1 + ik2)(k3 − 1)]ω2(k − p)

+ [−1 − ik2(k1 + ik2)|k − p|−2]ω3(k − p) + ε|k|2ω1(k)

+ [−(k1 − ik2) − ik2|k + p|−2]ω1(k + p)

+ [i|k + p|−2k1 − i|k + p|−2(k1 − ik2)(k3 + 1)]ω2(k + p)

+ [−1 + ik2(k1 − ik2)|k + p|−2]ω3(k + p) = −λω1(k),

[k2|k − p|−2 − i(k3 − 1)(k1 + ik2)|k − p|−2]ω1(k − p)

+ [(k1 + ik2) − k1|k − p|−2]ω2(k − p)

+ [−i + ik1(k1 + ik2)|k − p|−2]ω3(k − p) + ε|k|2ω2(k)

+ [−k2|k + p|−2 + i(k3 + 1)(k1 − ik2)|k + p|−2]ω1(k + p)

+ [−(k1 − ik2) + k1|k + p|−2]ω2(k + p)

+ [i − ik1(k1 − ik2)|k + p|−2]ω3(k + p) = −λω2(k),

[ik2(k1 + ik2)|k − p|−2]ω1(k − p) + [−ik1(k1 + ik2)|k − p|−2]ω2(k − p)

+ [k1 + ik2]ω3(k − p) + ε|k|2ω3(k) + [−ik2(k1 − ik2)|k + p|−2]ω1(k + p)

+ [ik1(k1 − ik2)|k + p|−2]ω2(k + p) + [−(k1 − ik2)]ω3(k + p) = −λω3(k).

Thus the 3D linear NS operator also decouples according to the lines k̂+jp (j ∈ Z). Next
we study the zero viscosity limit of the spectrum of this 3D linear NS operator. When k̂ =
(α,0,0), we have tested the truncation of the line k̂ + jp up to |j | ≤ 400. The deformation
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Fig. 11 The eigenvalues of the line k̂ = (α,0,0) as a subsystem of the 3D shear linearization for various ε

pattern stays the same. Below we present the case |j | ≤ 100 for which the pictures are more
clear. Figure 11a shows the case ε = 2.0 where all the eigenvalues are negative. Figure 11b
shows the case ε = 1.8 where a pair of eigenvalues jumps off the real axis. When ε ≤ 0.66,
a unique positive eigenvalue appears. Figure 11c shows the case ε = 0.0007 where a bubble
has developed. After many case testings, we conclude that: As ε → 0+, the limiting picture is
the same with Fig. 2c. When ε = 0, our numerical computation indicates that the spectrum
picture is the same with Fig. 2d. All other decoupled systems have the same bifurcation
patterns but without the pair of persistent eigenvalues. For the entire spectrum of the 3D
linear NS operator, the limiting picture is the same with Fig. 4a as ε → 0+; and the spectrum
is the same with Fig. 4b when setting ε = 0 in which the continuous spectrum part has been
established rigorously [31]. It seems that the Unstable Disk Theorem [12] of the 2D linear
Euler case is still valid: |k̂ + jp| < |p| for some j , implies that there is an eigenvalue of
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positive real part; while |k̂ + jp| > |p| for all j , implies that there is no eigenvalue of
positive real part.

7.2 The ABC Fixed Point

In this case, the periodic domain is the cube, i.e. α = β = 1. The ABC flow is given specifi-
cally by

�∗
1 = A sinmx3 + C cosmx2, �∗

2 = B sinmx1 + A cosmx3,

�∗
3 = C sinmx2 + B cosmx1,

where m is a positive integer, and (A,B,C) are real parameters. In terms of Fourier modes:
Let p = (m,0,0), q = (0,m,0), and r = (0,0,m), then the ABC flow is given by

ω∗
1(q) = 1

2
C, ω∗

1(−q) = 1

2
C,

ω∗
1(r) = 1

2i
A, ω∗

1(−r) = − 1

2i
A,

ω∗
2(p) = 1

2i
B, ω∗

2(−p) = − 1

2i
B,

ω∗
2(r) = 1

2
A, ω∗

2(−r) = 1

2
A,

ω∗
3(p) = 1

2
B, ω∗

3(−p) = 1

2
B,

ω∗
3(q) = 1

2i
C, ω∗

3(−q) = − 1

2i
C.

The spectral equation for the linear 3D NS operator at the ABC flow is then given by

λω(k) = −ε|k|2ω(k) − ks

∑
k=k̃+k̂

[|k̃|−2k̃mω∗
n(k̃)[εmnωs(k̂) − εsmnω(k̂)]

+ |k̃|−2k̃mωn(k̃)[εmnω
∗
s (k̂) − εsmnω

∗
 (k̂)]].

Calculating the eigenvalues of the Galerkin truncations of this system becomes challeng-
ing. Beyond the size {|kn| ≤ 6, n = 1,2,3}, the computing time is too long. Below we
present some pictures for the Galerkin truncation {|kn| ≤ 4, n = 1,2,3}. We choose m = 1,
A = 1.2, B = 0.7 and C = 0.9. When ε = 20000, all the eigenvalues are negative as shown
in Fig. 12a. As ε is decreased, eigenvalues start to jump off the real axis and form vertical
lines as shown in Fig. 12b when ε = 10, in contrast to the parabolas in the cases of cat’s
eye and 3D shear. When ε is decreased to ε = 0.1, many eigenvalues move to the right half
plane, i.e. there are many unstable eigenvalues as shown in Fig. 12c. Notice that for the full
linear NS operator, there should be an infinite tail of negative eigenvalues to the left. When
ε = 0, the eigenvalues of the Galerkin truncation of linear NS are symmetric with respect to
the real and imaginary axes as shown in Fig. 12d. When ε = 0, the full linear Euler operator
at the ABC flow has a continuous spectrum similar to that at the cat’s eye [31]. That is,
the continuous spectrum of the linear Euler at the ABC flow, in any Sobolev space Hs(T2)

where s is a non-negative integer, is a vertical band of width 2sσ symmetric with respect to
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Fig. 12 The eigenvalues of the (Galerkin truncation of) linear NS at the ABC flow for various ε

the imaginary axis {λ : |Re(λ)| ≤ sσ } as shown in Fig. 6c, where σ > 0 is the largest Lia-
punov exponent of the vector field given by ABC flow. Thus the width of the vertical band
is proportional to the scale s of the Sobolev space Hs(T2) [31]. The union of all such bands
for all integers s ≥ 0 is the entire complex plane. The eigenfunctions of the linear NS at the
ABC flow when ε > 0 belong to Hs(T2) for all integers s ≥ 0. As ε is decreased, the eigen-
values move into the right half plane. The ε → 0+ limiting picture of the eigenvalues of the
linear NS at the ABC flow is that the eigenvalues are dense on the entire plane, in contrast
to the left half plane in the case of cat’s eye as shown in Fig. 6b. That is, all the eigenvalues
of the linear NS at the ABC flow condense into the entire plane—“condensation”. Thus the
possible instability hinted by the right half band of the continuous spectrum of linear Euler
in Hs(T2) may be realized by real viscous fluids in this case in contrast to the cat’s eye case.
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8 Numerical Verification of the Heteroclinics Conjecture for 3D Euler Equations

For 3D Euler equations, one can also pose the heteroclinics conjecture.

• The Heteroclinics Conjecture in 3D: In the Sobolev space H(T2) ( ≥ 3), for any fixed
point � of the 3D Euler flow having an unstable eigenvalue, there is a pair of heteroclinic
cycles asymptotic to the two fixed points � and −�.

The motivation of this conjecture comes from the fact that 3D Euler equations have two
invariants (kinetic energy and helicity) and a Lax pair [25]. Even though we have not done
any Galerkin truncation verification on this as in the 2D case, our numerical simulation in
the previous section shows that the spectra of 3D shear has the same properties as 2D shear.
The nature of “a pair of heteroclinic cycles” is motivated from the following symmetries:

(1) �(t, x1, x2, x3) −→ �(t,−x1,−x2,−x3),
(2) �(t, x1, x2, x3) −→ −�(−t, x1, x2, x3),
(3) �(t, x1, x2, x3) −→ �(t, x1 + θ1, x2 + θ2, x3 + θ3), ∀θ1, θ2, θ3.

The first symmetry allows us to work in an invariant subspace in which all the ωk’s in (7.2)
are real-valued. This corresponds to the cosine transform. But for the 3D shear and ABC
flow, we have to work with complex ωk’s. The second symmetry maps the unstable manifold
of the 3D shear (7.4) into the stable manifold of its negative. The third symmetry maps the
unstable manifold of the 3D shear into the unstable manifold of its negative, by choosing
θ3 = π .

If there is a heteroclinic orbit asymptotic to 3D shear (7.4) and its negative as t → −∞
and +∞, then there may be two corresponding to the unstable eigenvector and its nega-
tive. In fact, both may lie on certain sphere in the phase space due to the constraint by the
kinetic energy. Then the third symmetry generates another pair of heteroclinic orbit asymp-
totic to 3D shear (7.4) and its negative as t → −∞ and +∞. Together they form a pair of
heteroclinic cycles.

Below we will verify this conjecture for the Galerkin truncation: |κn| ≤ 1 (n = 1,2,3)
where k = (ακ1, βκ2, k3). Even though this is the smallest Galerkin truncation, the di-
mension of the resulting system is still very large. For this Galerkin truncation, the fixed
point (7.4) is still a fixed point. The linearized Galerkin truncation operator at this fixed
point can be obtained by the corresponding Galerkin truncation the 3D linear Euler opera-
tor. In this case, the line segment labeled by k̂ = (α,0,0) (ε = 0) has a positive eigenvalue
λ = 0.5792, and the corresponding eigenvector v is given by:

ω1(1,0,−1) = 0.328919 − i0.246347, ω2(1,0,−1) = −0.246347 − i0.328919,

ω3(1,0,−1) = 0.230243 − i0.172443, ω1(1,0,0) = 0,

ω2(1,0,0) = −0.19583 − i0.26147,

ω3(1,0,0) = 0.183029 − i0.137081, ω1(1,0,1) = 0.328919 − i 0.246347,

ω2(1,0,1) = 0.246347 + i0.328919, ω3(1,0,1) = −0.230243 + i 0.172443,

and all other ω(k)’s are zero. Starting from the initial condition

ω = ω∗ + 10−3v, (8.1)

where ω∗ is the Fourier transform of the fixed point (7.4), the approximate heteroclinic
orbit reaches order ∼ 10−3 neighborhood of −ω∗ during the time interval [0,29.33]. This
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Fig. 13 An approximate
heteroclinic cycle of the Galerkin
truncation: |κn| ≤ 1 (n = 1,2,3)
of the 3D Euler equations

approximate heteroclinic orbit is the lower branch of the approximate heteroclinic cycle
shown in Fig. 13. Notice that the approximate heteroclinic orbit here does not have the extra
loop as in Fig. 8. When more modes are included in the Galerkin truncation, extra loops may
be generated.

9 Melnikov Integral and Numerical Simulation of Chaos in 3D Navier-Stokes
Equation

Setting ε = 0 in the 3D NS (7.1), one gets the corresponding 3D Euler equation for which
one has the following constants of motion:

E =
∫

T3
|u|2dx, H =

∫
T3

u · �dx,

where E is the kinetic energy and H is the helicity. We will use the constant of motion

G = E − H =
∫

T3
|u|2dx −

∫
T3

u · �dx

to build a Melnikov integral for the corresponding 3D Navier-Stokes equation (7.1). We will
try to make use of the Melnikov integral as a measure of chaos and to conduct a control of
chaos, around the 3D shear flow (7.4). The gradient of G in u or � is given by

∇uG = 2(u − �), ∇�G = 2 curl−1(u − �),

where curl = ∇×. The gradient is zero at the 3D shear flow (7.4). We define the Melnikov
function for the 3D NS (7.1) as

M = αβ

16π3

∫ +∞

−∞

∫
T3

∇�G[�� + f (t, x) + bδ̃(x)]dxdt

= αβ

16π3

∫ +∞

−∞

∫
T3

2 curl−1(u − �)[�� + f (t, x) + bδ̃(x)]dxdt.
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Next we conduct numerical simulations on the Galerkin truncation |κn| ≤ 1 (n = 1,2,3).
When ε = 0, the Liapunov exponent σ = 0 for all the numerical tests that we run. This in-
dicates that there is no chaos when ε = 0. Often the smallest Galerkin truncation is an inte-
grable system [14, 24]. In such a circumstance, the Melnikov integral represents the leading
order term of the distance between the broken heteroclinic orbit and the center-stable man-
ifold of the fixed point. But the dimension of the center-stable manifold is large. The zero
of the Melnikov integral implies that the unstable manifold in which the broken heteroclinic
orbit lives, intersects with the center-stable manifold. Therefore, there is a new heteroclinic
orbit which lives in the intersection. Such a heteroclinic orbit does not immediately imply
the existence of chaos, even though it may lead to some transient chaos characterized by
finite time positive Liapunov exponent (infinite time positive Liapunov exponent is zero).
To compute the Melnikov integral, we choose the external force and control as follows

f1 = a sin t cos(x1 + αx2), f2 = f3 = 0,

δ̃1(x) =
∑

κ

eik·x, δ̃2 = δ̃3 = 0,

where the sum is over the Galerkin truncation. Then the Melnikov integral has the expression

M = M1 + a

√
M2

2 + M2
3 sin(t0 + θ) + bM4, (9.1)

where

sin θ = M3√
M2

2 + M2
3

, cos θ = M2√
M2

2 + M2
3

,

M1 = −
∫ +∞

−∞

∑
k

Re
{
iεmnkm(i|k|−2εnsrksωr − ωn)ω(k)

}
dt,

M2 =
∫ +∞

−∞
cos t Re

{
i|k|−2ε1mnkm(i|k|−2εnsrksωr − ωn)

}
k=(α,0,1)

dt,

M3 =
∫ +∞

−∞
sin t Re

{
i|k|−2ε1mnkm(i|k|−2εnsrksωr − ωn)

}
k=(α,0,1)

dt,

M4 =
∫ +∞

−∞

∑
k

Re
{
i|k|−2ε1mnkm(i|k|−2εnsrksωr − ωn)

}
dt,

where the sum is over the Galerkin truncation, all the integrals are evaluated along the lower
heteroclinic orbit in Fig. 13 for the time interval [−29.33/2,29.33/2], rather than (−∞,∞)
which already gives satisfactory accuracy. Direct numerical computation gives that

M1 = 645.7, M2 = 1.581, M3 = 0, M4 = 47.86.

When b = 0 (no control), M has roots when

|a| > 408.4.
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When ε = 10−5, b = 0, and T = 4 × 104π , we find that

a = 300 a = 400 a = 420

σ = 0.8 × 10−5 σ = 1.3 × 10−4 σ = 0.8 × 10−4

a = 600 a = 800

σ = 4.9 × 10−4 σ = 4.9 × 10−4.

Around a = 400, σ has a jump of one order which seems to be in agreement with the
Melnikov prediction. However, when a = 100, σ = 3.6 × 10−4 which may be due to other
form of transient chaos not related to heteroclinic re-intersection, or even the roughness of
σ as a function of a.

10 Melnikov Integral and Control of Chaos in 3D Navier-Stokes Equation

Now we turn on the control (b 
= 0). When

b = −M1/M4 ≈ −13.5, (10.1)

the Melnikov integral M (9.1) has roots for any a.
When ε = 10−5, b = −13.5, and T = 4 × 104π , we find that

a = 1 a = 10 a = 100 a = 200

σ = 0.098 σ = 0.125 σ = 0.095 σ = 0.083.

Thus under the control, strong chaos exists even when a = 1. It seems that the control
dramatically enhanced chaos.

11 Numerical Verification of the Heteroclinics Conjecture for a Line Model

Returning to the 2D Navier-Stokes equation (2.1), numerical simulations on large Galerkin
truncations are still challenging to the current computer ability. Here we will study a simple
line model [14] obtained by a special Galerkin truncation [14]. Let p = (1,0) and k̂ = (0, α),
the line model is given by the Galerkin truncation:

{±p, ±(k̂ + np), ∀n ∈ Z}.
We will work in the invariant subspace where ωk’s are real-valued. The governing equation
of the line model is

ω̇n = An−1ω∗ωn−1 − An+1ω∗ωn+1

+ ε[−(n2 + α2)ωn + Fn + b�n], (11.1)

ω̇∗ = −
∑
n∈Z

An−1,nωn−1ωn + ε[−ω∗ + F∗ + b�∗], (11.2)

where ωn = ωk̂+np , ω∗ = ωp , similarly for F and � as the Fourier transforms of f and δ̃,
and

An = 2A(p, k̂ + np) = α

[
1

n2 + α2
− 1

]
,

An−1,n = 2A(k̂ + (n − 1)p, k̂ + np) = α

[
1

(n − 1)2 + α2
− 1

n2 + α2

]
.
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For the line model, verification of the heteroclinics conjecture is relatively easier. First of
all, for the line model (ε = 0), it can be proved that the fixed point � = 2 cosx1 has a
1-dimensional local unstable manifold Wu. The basic idea of the proof is that one can apply
the Riesz projections to the spectrum of the linearized line model operator at the fixed point,
and the nonlinear terms have bounded coefficients so that they are quadratic in a Banach
algebra. For the full 2D Euler equation, the difficulty lies at the fact that the nonlinear term
is not quadratic in a Banach algebra.

Denote by � the 1 co-dimensional hyperplane

� = {ω |ω(1,0) = 0}.
We have the corollary of Theorem 3.1.

Corollary 11.1 Assume that Wu ∩� 
= ∅; then the heteroclinics conjecture is true, i.e. there
is a heteroclinic orbit that connects � = 2 cosx1 and −�.

For any truncation (|n| ≤ N ) of the line model, we first calculate the unstable eigenvec-
tor. Then we track the heteroclinic orbit with the initial condition provided by the unstable
eigenvector. Numerically exact heteroclinic orbit is obtained for any N (|n| ≤ N ). That is,
for any N (|n| ≤ N ), it can be verified numerically that

Wu ∩ � 
= ∅.

For |n| ≤ 32, the heteroclinic orbit is shown in Fig. 14. In comparison with the full 2D Euler
equation, the hyperplane � here is only 1 co-dimensional. This is the simplest nontrivial
case to study the intersection Wu ∩ �. We also conduct calculations on the Liapunov expo-
nents. When ε = 0, |n| ≤ 32, σ = 0 for all the computed time intervals, which means that
there is no chaos. This is true for any N (n ≤ N ) and any computational time interval. This
indicates that the line model may be integrable when ε = 0. From these facts, it is clear that

Fig. 14 Numerically exact
heteroclinic orbit of the line
model (ε = 0) for |n| ≤ 32
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the line model is a good starting point for a rigorous analysis. For instance, it is hopeful to
make the Melnikov integral theory rigorous.

12 Melnikov Integral and Numerical Simulation of Chaos in the Line Model

For the line model, the kinetic energy and enstrophy are still invariants when ε = 0. Choos-
ing the same external force (5.1) and control (6.1), we have the Melnikov integral which
is the same with that of 2D NS except that the Fourier modes summation is over the line
model,

M0 = M1 + a

√
M2

2 + M2
3 sin(t0 + θ) + bMc. (12.1)

For the truncation |n| ≤ 32, we evaluate these integrals along the heteroclinic orbit in Fig. 14,
and obtain that

M1 = −6.0705, M2 = −0.10665, M3 = 0, Mc = 11.9728.

For the case of no control (b = 0), when

|a| > 56.92

the Melnikov integral M has roots.
We conduct some numerical simulations on the (transient) chaos. When ε = 10−3, and

T = 2 × 103π , we find that

a ≤ 200 a = 400

σ < 0 σ = 7.2 × 10−4.

According to the roots of the Melnikov integral, when |a| > 56.92, the broken heteroclinic
orbit may re-intersect with certain center-stable manifold. But this may not generate any
transient chaos immediately. According to the above Liapunov exponent result, transient
chaos is generated when a = 400. When ε = 0, we did not find any chaos. It is possible that
the ε = 0 line model is integrable. Overall, we see that the Melnikov prediction performs
better here for the line model than for the full 2D NS.

13 Melnikov Integral and Control of Chaos in the Line Model

Now we turn on the control (b 
= 0). When

b = −M1/Mc = 0.50702425

the Melnikov integral M has roots for any a. To test the effectiveness of the control, we set b

to the above value and conduct some numerical simulations on the (transient) chaos. When
ε = 10−3, b = 0.50702425, and T = 2 × 103π , we find that

a = 1 a = 10 a = 50

σ = −12.6 × 10−4 σ = 2 × 10−4 σ = 0.2 × 10−4

a = 200 a = 400

σ = 2 × 10−4 σ = 0.87 × 10−4.
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The control clearly enhanced the transient chaos. The control effectively pushed the thresh-
old of a backward from 400 to 10 for the generation of transient chaos. This shows that the
Melnikov integral control performs better here for the line model than for the full 2D NS.

14 Numerical Verification of the Heteroclinics Conjecture for a Two Lines Model

To gain an understanding of the effect of the other modes np (|n| ≥ 2) on the line model, we
introduce the two lines model which is the Galerkin truncation:

{(k1, k2), |k2| ≤ 1}.
We also work in the invariant subspace where ωk’s are real-valued.

For the two lines model, one can derive the governing equations in the physical variables.
Let

� = ω(t, x) + eiαyq(t, x) + e−iαy q̄(t, x),

where ω is real-valued, q is complex-valued (the Fourier transform of q is real-valued), and

∫ 2π

0
ω(t, x)dx = 0.

Let

f + bδ̃ = η(t, x) + eiαyF (t, x) + e−iαyF̄ (t, x),

where η is real-valued, F is complex-valued (the Fourier transform of F is real-valued), and

∫ 2π

0
η(t, x)dx = 0.

Substituting the above expressions into the 2D NS (2.1), and ignoring the terms involving
ei2αy and e−i2αy , one gets the two lines model in the physical variables,

i∂tq + α
[
(∂xω)(∂2

x − α2)−1 − (∂−1
x ω)

]
q = iε

[
(∂2

x − α2)q + F
]
, (14.1)

∂tω + iα∂x

[
q(∂2

x − α2)−1q̄ − q̄(∂2
x − α2)−1q

] = ε
[
∂2

xω + η
]
. (14.2)

Introducing θ = ∂−1
x ω, ϕ = (∂2

x − α2)−1q , and h = ∂−1
x η, one gets

i∂tq + α(ϕ∂2
x θ − θq) = iε

[
(∂2

x − α2)q + F
]
, (14.3)

∂tθ + iα(qϕ̄ − q̄ϕ) = ε
[
∂2

x θ + h
]
, (14.4)

(∂2
x − α2)ϕ = q. (14.5)

When ε = 0, then Kinetic energy and enstrophy

E0 =
∫ 2π

0

[
θ2 + 2α2|ϕ|2 + 2|∂xϕ|2]dx, E1 =

∫ 2π

0

[
ω2 + 2|q|2]dx,

are still invariants.
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Denote by � the hyperplane

� = {ω |ωk = 0, whenever k2 = 0} .

For the two lines model, when ε = 0, existence of a local unstable manifold for the fixed
point � = 2 cosx1 is an open problem due to the fact that the coefficients of the nonlinear
terms are not bounded, i.e. the nonlinear terms are not quadratic in a Banach algebra. Then
we have the corollary of Theorem 3.1.

Corollary 14.1 Assume that the fixed point � = 2 cosx1 has a 1-dimensional local unstable
manifold Wu, and Wu ∩ � 
= ∅; then the heteroclinics conjecture is true, i.e. there is a
heteroclinic orbit that connects � = 2 cosx1 and −�.

For any truncation (|k1| ≤ N ) of the two lines model, we first calculate the unstable
eigenvector. Then we track the heteroclinic orbit with the initial condition provided by the
unstable eigenvector. For |k1| ≤ 2, numerically exact heteroclinic orbit is obtained. That is,
it can verified numerically that

Wu ∩ � 
= ∅.

Figure 15 shows the numerically exact heteroclinic orbit. For |k1| ≤ 4,

Distance (Wu,�) ≈ 0.0086.

Figure 16 shows the approximate heteroclinic orbit. For |k1| ≤ 16,

Distance (Wu,�) ≈ 0.012.

Figure 17 shows the corresponding approximate heteroclinic orbit. Unlike the line model,
here we do not always get numerically exact heteroclinic orbits. This is due to the influence
of the modes (k1,0).

Fig. 15 Numerically exact
heteroclinic orbit of the two lines
model for |k1| ≤ 2
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Fig. 16 Approximate
heteroclinic orbit of the two lines
model for |k1| ≤ 4

Fig. 17 Approximate
heteroclinic orbit of the two lines
model for |k1| ≤ 16

15 Melnikov Integral and Numerical Simulation of Chaos in the Two Lines Model

When ε = 0, there is very weak chaos for the computational interval t ∈ [0,4 × 104π]:

|n| ≤ 4 |n| ≤ 8 |n| ≤ 16

σ = 9.5 × 10−4 σ = 8.2 × 10−4 σ = 8.5 × 10−4.
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For the two lines model, the kinetic energy and enstrophy are still invariants when ε = 0.
Choosing the same external force (5.1) and control (6.1), we have the Melnikov integral
which is the same with that of 2D NS except that the Fourier modes summation is over the
two lines model,

M0 = M1 + a

√
M2

2 + M2
3 sin(t0 + θ) + bMc. (15.1)

For the truncation |k1| ≤ 16, we evaluate these integrals along the heteroclinic orbit in
Fig. 17, and obtain that

M1 = −4.9, M2 = −0.0948, M3 = 0, Mc = 12.2498.

For the case of no control (b = 0), when

|a| > 51.688,

the Melnikov integral M has roots. We conduct some numerical simulations on the (tran-
sient) chaos. When ε = 10−3, and T = 2 × 103π , we find that

a ≤ 200 a = 400

σ < 0 σ = 1.27 × 10−2.

According to the roots of the Melnikov integral, when |a| > 51.688, the broken heteroclinic
orbit may re-intersect with certain center-stable manifold. According the above Liapunov
exponent result, strong transient chaos is generated when a = 400. Thus the result is almost
the same as that of the line model. In comparison with the line model, we find that: (i) when
ε = 0, there is weak transient chaos, (ii) the transient chaos here seems very strong. Overall,
we find that the Melnikov prediction also performs well here for the two lines model than
for the full 2D NS.

16 Melnikov Integral and Control of Chaos in the Two Lines Model

Now we turn on the control (b 
= 0). When

b = −M1/Mc = 0.4,

the Melnikov integral M has roots for any a. To test the effectiveness of the control, we set b

to the above value and conduct some numerical simulations on the (transient) chaos. When
ε = 10−3, b = 0.4, and T = 2 × 103π , we find that

a ≤ 400 a = 500 a = 600

σ < 0 σ = 0.97 × 10−3 σ = 3.0 × 10−4

a = 700 a = 800

σ = 4.6 × 10−2 σ = 5.0 × 10−2.

The control seems to tame the transient chaos, in contrast to the line model. The control
pushed the threshold of a forward from 400 to 700 for the generation of strong transient
chaos.
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17 Conclusion and Discussion

Through a combination of analytical and numerical studies, we now have a better under-
standing on the zero viscosity limit of the spectra of linear NS operators. We can classify
the zero viscosity limit into four categories: persistence, condensation, singularity, and ad-
dition. This lays a good foundation for studying the dynamics of Navier-Stokes equations in
the zero viscosity limit, in particular turbulence. Based upon the Lax pair structure, property
of invariants, and nature of instability of 2D and 3D Euler equations, we proposed and nu-
merically studied the so-called heteroclinics conjecture. We believe that such heteroclinics is
the source of turbulence. Based upon the heteroclinics conjecture, we also introduced Mel-
nikov integrals built from kinetic energy and enstrophy for 2D Euler equation, and kinetic
energy and helicity for 3D Euler equations. Our theory is to use such Melnikov integrals
as indicators for predicting and controling chaos. At the moment, our theory is more of a
physical nature rather than a rigorously mathematical one. Nevertheless, we believe that it
is a crucial first step toward a complete theory.

Our numerical verification on the heteroclinics conjecture seems very convincing. Of
course, increasing the size of the Galerkin truncations can quickly reach the limit of our
computer ability. We did not try to utilize today’s supercomputer due to the fact that Galerkin
truncations are essentially singular perturbations of Euler equations. We believe that analysis
is the key to a better understanding of the heteroclinics conjecture. There might even be a
computer-assisted proof of the heteroclinics conjecture.

All the chaos in Navier-Stokes equations observed in this work is transient chaos, pre-
sumably because we use weak forcing. We realized through our numerical simulations that
Liapunov exponent performs very well as a measure of (even transient) chaos in Navier-
Stokes equations. Nevertheless, its dependence upon various parameters is very rough.
Therefore, our numerical value of the Liapunov exponent depends upon the specific set-
ting. Our Melnikov integral theory is partially successful in predicting and controlling chaos
for NS equations. It is of course not as rigorous and effective as that for sine-Gordon system
(Appendix A). Because we are in high dimensions, the zeros of the Melnikov integral do not
always imply the existence of chaos. Nevertheless, they imply a topological change in the
phase diagram. We have reported various results and data on our Melnikov integral theory.
They form the first step toward a complete theory presumably with the help of analysis. We
believe that the Melnikov integral theory for NS equations has a lot of potential, especially
in the current circumstance that there is no effective tools in dealing with detailed structures
of chaos in NS equations. We also believe that both the line and the two lines models have
great potential in future analytical studies on modeling the dynamics of 2D NS equations.

Acknowledgement The authors would like to thank the referees for valuable suggestions and comments.

Appendix A: Melnikov Integral and Control of Chaos in a Sine-Gordon Equation

Consider the sine-Gordon equation [17]

utt = 9

16
uxx + sinu + ε

[−aut + (1 + bδ̃(x)) cos t sin3 u
]
, (18.1)

which is subject to periodic boundary condition and odd constraint

u(t, x + 2π) = u(t, x), u(t,−x) = −u(t, x), (18.2)
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where u is a real-valued function of two real variables (t, x), ε is a small perturbation pa-
rameter, a > 0 is the damping coefficient, bδ̃(x) is the spatially localized control, δ̃(x) is
an even and 2π -periodic function of x, and b is the control parameter. The system (18.1) is
invariant under the transform u → −u.

The natural phase space for (18.1) is (u,ut ) ∈ Hn+1 × Hn (n ≥ 0) where Hn is the
Sobolev space on [0,2π ]. Let P be the Poincaré period-2π map of (18.1) in Hn+1 × Hn.
Without the control (b = 0), we have the following chaos theorem [17, 21].

Theorem 18.1 [17] There exists a constant a0 > 0, when ε is sufficiently small, for any
a ∈ [ 1

100a0, a0] there exists a symmetric pair of homoclinic orbits h± (h− = −h+) asymp-
totic to (u,ut ) = (0,0). In the neighborhood of h±, there exists chaos to the sine-Gordon
equation (18.1) in the following sense: There is a Cantor set � of points in Hn+1 × Hn

(n ≥ 0), which is invariant under an iterated Poincaré period-2π P K for some K . The ac-
tion of P K on � is topologically conjugate to the Bernoulli shift on two symbols 0 and 1.

In the product topology, the Bernoulli shift has the property of sensitive dependence upon
initial data—the signature of chaos.

When we turn on the control (b 
= 0), we hope to find values of b such that the chaos in
Theorem 18.1 is controlled (tamed—annihilated or less chaotic, enhanced—more chaotic).
Our main tool is the Melnikov function. To build such a function, we need results from
integrable theory. When ε = 0, the fixed point (u = 0) of the sine-Gordon equation (18.1)
has a figure eight connecting to it [17]:

u = ±4 arctan

[√
7

3
sech τ sinx

]
, (18.3)

where τ =
√

7
4 (t − t0) and t0 is a real parameter. Along this figure eight, a Melnikov vector

has the expression [17]:

∂F1

∂ut

= ± 7π

12
√

2
sech τ tanh τ sinx

[
9

16
+ 7

16
sech2τ sin2 x

]−1

, (18.4)

where F1 is a constant of motion. When ε 
= 0, the Melnikov function for (18.1) is given
by [17]:

M(t0, a, b) =
∫ +∞

−∞

∫ 2π

0

∂F1

∂ut

[−aut + (1 + bδ̃(x)) cos t sin3 u
]
dxdt,

where u and ∂F1
∂ut

are given in (18.3) and (18.4). Using the odd and even property of (18.3)
and (18.4) in t and x, we obtain

M(t0, a, b) = −aMa + sin t0 (M0 + bMb), (18.5)

where

Ma =
∫ +∞

−∞

∫ 2π

0

∂F1

∂ut

utdxdt,

M0 = −
∫ +∞

−∞

∫ 2π

0

∂F1

∂ut

sin
4√
7
τ sin3 udxdt,
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Mb = −
∫ +∞

−∞

∫ 2π

0

∂F1

∂ut

δ̃(x) sin
4√
7
τ sin3 udxdt.

In the phase space Hn+1 × Hn (n ≥ 0), (u,ut ) = (0,0) is a saddle point under the
Poincaré period-2π map of (18.1) with one-dimensional unstable manifold Wu and one-
codimensional stable manifold Ws . The Melnikov function εM(t0, a, b) is the leading order
term of the distance between Wu and Ws . For the entire rigorous theory, see [18]. When
|aMa| < |M0 + bMb|, the roots of M are given by

sin t0 = aMa

M0 + bMb

. (18.6)

Near these roots, Wu and Ws intersect. This leads to the existence of a symmetric pair of
homoclinic orbits and chaos in Theorem 18.1. When |aMa| > |M0 + bMb|, i.e.

−a|Ma| − M0 < bMb < a|Ma| − M0, (18.7)

the Melnikov function is not zero, and we have the following theorem.

Theorem 18.2 When the control parameter b satisfies (18.7), the chaos in Theorem 18.1
disappears.

Proof When the control parameter b satisfies (18.7), the Melnikov function is not zero for
any t0, and Wu and Ws do not intersect. Thus the pair of homoclinic orbits and the corre-
sponding chaos in Theorem 18.1 disappear. �

Theorem 18.2 only claims that the chaos in Theorem 18.1 disappears. This does not mean
that there is no chaos in the entire phase space Hn+1 × Hn (n ≥ 0). An important point here
is that by manipulating the localized control bδ̃(x), one can change the Melnikov function
which leads to the disappearance of the non-localized (in x) chaos. The control condition
(18.7) is also interesting: It is not true that the larger the control parameter b is, the better
the taming is. In fact, when b is large enough, the chaos will reappear.

When |aMa| < |M0 + bMb|, the Melnikov function (18.5) has roots (18.6), and Theo-
rem 18.1 holds. As a function of t0, the Melnikov function M has the maximal absolute
value (the L∞ norm),

M∗(a, b) = a|Ma| + |M0 + bMb|,
for t0 ∈ [0,2π ]. M∗ is the leading order term of the maximal distance between Wu and Ws .
Notice that Wu and Ws intersects near the t0 given by (18.6). So the larger the M∗ is, the
more violent the chaos is. Thus M∗(a, b) serves as a measure of the strength of the chaos. By
changing the control parameter b, we can adjust the strength M∗ of the chaos—enhancing
or decreasing.

Appendix B: The Lagrange Flow Induced by a Solution to the 2D Euler Equation Is
Always Integrable

It is well-known that 2D Euler equation is globally well-posed [7, 8]. For any solution to
the 2D Euler equation (ε = 0 in (2.1)), let � = �(t, x1, x2) be the corresponding stream
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function. Then the Lagrange flow induced by the solution is given by

dx1

dt
= − ∂�

∂x2
,

dx2

dt
= ∂�

∂x1
. (19.1)

To our present knowledge, the following theorem was first observed in [2].

Theorem 19.1 The Lagrange flow (19.1) induced by a solution to the 2D Euler equation is
always integrable.

Proof Assume that �(t, x1, x2) is not a steady state, i.e. it depends upon t (in this case ��

is functionally independent of � , otherwise, �(t, x1, x2) would be a steady state). Introduc-
ing the new Hamiltonian H = �(θ, x1, x2) − ψ , and converting (19.1) into an autonomous
system

dx1

dt
= −∂H

∂x2
,

dx2

dt
= ∂H

∂x1
,

dθ

dt
= −∂H

∂ψ
,

dψ

dt
= ∂H

∂θ
. (19.2)

Notice that the vorticity � = �� is another constant of motion of (19.2) besides H :

d

dt
�� = ∂θ�� − ∂x1��∂x2� + ∂x2��∂x1� = 0.

Since �� is independent of ψ , �� and H are functionally independent. Thus (19.2) is
integrable in the Liouville sense. In the case that � is independent of t (i.e. a steady state),
then (19.1) is an autonomous system, thus also integrable in the Liouville sense. �

A common way to obtain steady states of 2D Euler equation is by solving

�� = f (�),

where f (�) is an arbitrary function of � , i.e. �� and � are functionally dependent.
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